
Migration Guide

VR-Forces

 Migration Guide

VR-Forces

Copyright © 2017 VT MAK
All rights Reserved. Printed in the United States.

Under copyright laws, no part of this document may be copied or reproduced in
any form without prior written consent of VT MAK.

VR-Exchange™, VR-TheWorld™, VR-Vantage™, DI-Guy™, and DI-Guy
Scenario™ are trademarks of VT MAK. MÄK Technologies®, VR-Forces®,
RTIspy®, B-HAVE®, and VR-Link® are registered trademarks of VT MAK.

GL Studio® is a registered trademark of The DiSTI® Corporation.

Portions of this software utilize SpeedTree®RT technology (©2008 Interactive Data
Visualization, Inc.). SpeedTree® is a registered trademark of Interactive Data Visual-

ization, Inc. All rights reserved.

SilverLining™ is a trademark of Sundog Software.

Terrain Profiles are based in part on the work of the Qwt project (http://qwt.source-
forge.net).

All other trademarks are owned by their respective companies.

For third-party license information, please see “Third Party Licenses,” on page xiii.

VT MAK
150 Cambridge Park Drive, 3rd Floor

Cambridge, MA 02140 USA

Voice: 617-876-8085
Fax: 617-876-9208

info@mak.com

www.mak.com

Revision VRF-4.5-9-170221

mailto:info@mak.com
http://www.mak.com

VR-F
Contents
Preface
VR-Forces Documentation .. vii
MAK Products ... viii
How to Contact Us .. xi
Document Conventions .. xii

DI-Guy Conventions .. xiii
Mouse Button Naming Conventions... xiii

Third Party Licenses ... xiii
Boost License... xiii
libXML and libICONV .. xiv
Lua .. xiv
LizardTech ... xv
Freefont OpenType Font Set.. xv
Autodesk Gameware Navigation... xv
osgoculusviewer Library.. xv
NVIDIA.. xvi
Third-Party Licenses for VR-Vantage Applications........................... xvii

Chapter 1. Migrating from VR-Forces 3.12 to 4.0.3
1.1. Getting Information About Objects .. 1-2
1.2. Storing Data .. 1-2
1.3. Managing Object Selection ... 1-3
1.4. Creating Symbols .. 1-4
1.5. Updating Symbols ... 1-5
1.6. Sending Messages to the Back-end .. 1-6
1.7. Adding Callbacks to Receive Messages .. 1-6
1.8. Keyboard and Mouse Handling ... 1-6
iiiorces Migration Guide

Contents
1.9. Changes to Signal Usage ... 1-7
1.9.1. Application Tick Notification .. 1-7
1.9.2. Selection Management ... 1-7
1.9.3. Tracking New Objects ... 1-8
1.9.4. Tracking Object Updates ... 1-8
1.9.5. Tracking Object Removals ... 1-9

Chapter 2. Migrating from VR-Forces 3.12 to 4.0.4
2.1. Getting Information About Objects .. 2-2
2.2. Storing Data .. 2-2
2.3. Managing Object Selection ... 2-3
2.4. Creating Symbols .. 2-4

2.4.1. Creating Local (Unpublished) Symbols 2-5
2.5. Updating Symbols ... 2-5
2.6. Sending Messages to the Back-end .. 2-6
2.7. Adding Callbacks to Receive Messages .. 2-6
2.8. Keyboard and Mouse Handling .. 2-7
2.9. Changes to Signal Usage ... 2-7

2.9.1. Application Tick Notification .. 2-8
2.9.2. Selection Management ... 2-8
2.9.3. Tracking New Objects ... 2-8
2.9.4. Tracking Object Updates ... 2-9
2.9.5. Tracking Resources .. 2-9
2.9.6. Tracking Object Removals ... 2-9

Chapter 3. Simulation Model Set Changes in VR-Forces 4.0.4
3.1. Simulation Model Set Changes ... 3-2

3.1.1. Flight Command Controllers ... 3-2
3.1.2. Weapon Interface ... 3-2
3.1.3. Radar Modes .. 3-3
3.1.4. Weapon Enhancements .. 3-3
3.1.5. Range Rings ... 3-3
3.1.6. Ammo Select Tables ... 3-3

Chapter 4. Migration to VR-Forces 4.1
4.1. API Changes ... 4-2
4.2. Simulation Model Set Changes ... 4-3

Chapter 5. Migration to VR-Forces 4.2
5.1. Changes to the Object Parameters Database 5-2

5.1.1. Migrating Legacy Simulation Model Sets to the
VR-Forces 4.2 Format ... 5-3

5.2. Changes to the Lua API .. 5-3
iv VT MAK

Contents
Chapter 6. Migration to VR-Forces 4.3
6.1. Changes to Simulation Model Sets .. 6-2
6.2. API Changes ... 6-3

Chapter 7. Migration to VR-Forces 4.4
7.1. UUID Replaces Object Name for Identifying Objects 7-2

7.1.1. Loading Legacy Scenarios ... 7-2
7.1.2. API Changes ... 7-2

7.2. Changes to VR-Link’s DtVector ... 7-3

Chapter 8. Migration to VR-Forces 4.5
8.1. API Changes .. 8-2

Index
VR-Forces Migration Guide v

Contents
vi VT MAK

VR-F
Preface
This manual is for developers who must migrate applications from previous versions of
VR-Forces to the current version.

VR-Forces Documentation
VR-Forces documentation is provided as manuals in PDF format, online help, and
HTML class documentation. The PDF files are in the ./doc directory. The VR-Forces
documentation set is as follows:

 VR-Forces Users Guide contains all documentation for running VR-Forces, creating
and running scenarios, and configuring VR-Forces.

 VR-Forces Migration Guide collates API migration information for recent releases.

 Online help. The VR-Forces front-end, the OPD Editor, and the Simulation
Object Editor have online help accessible from the Help menu.

 VR-Forces Developers Guide and API documentation. Class documentation and
developers guides in linked HTML pages.

 VR-Forces Release Notes.

 VR-Forces First Experience Guide. A brief introduction to the most basic features of
VR-Forces.

 VR-Forces Entity Model Catalog. A catalog of all of the simulation objects and
tactical graphics configured in the Simulation Object Editor, with basic parameter
details and a screen capture of the 3D model or icon.
viiorces Migration Guide

Preface — MAK Products
MAK Products
The VR-Forces is a member of the VT MAK line of software products designed to
streamline the process of developing and using networked simulated environments.
The VT MAK product line includes the following:

 VR-Link® Network Toolkit. VR-Link is an object-oriented library of C++ func-
tions and definitions that implement the High Level Architecture (HLA) and the
Distributed Interactive Simulation (DIS) protocol. VR-Link has built-in support
for the RPR FOM and allows you to map to other FOMs. This library minimizes
the time and effort required to build and maintain new HLA or DIS-compliant
applications, and to integrate such compliance into existing applications.

VR-Link includes a set of sample debugging applications and their source code.
The source code serves as an example of how to use the VR-Link Toolkit to write
applications. The executables provide valuable debugging services such as gener-
ating a predictable stream of HLA or DIS messages, and displaying the contents of
messages transmitted on the network.

 MAK RTI. An RTI (Run-Time Infrastructure) is required to run applications using
the High Level Architecture (HLA). The MAK RTI is optimized for high perfor-
mance. It has an API, RTIspy®, that allows you to extend the RTI using plug-in
modules. It also has a graphical user interface (the RTI Assistant) that helps users
with configuration tasks and managing federates and federations.

 VR-Forces®. VR-Forces is a computer generated forces application and toolkit. It
provides an application with a GUI, that gives you a 2D and 3D views of a simu-
lated environment.

You can create and view entities, aggregate them into hierarchical units, assign
tasks, set state parameters, and create plans that have tasks, set statements, and
conditional statements. You can simulate using entity-level modeling, which
focuses on the actions of individual people and vehicles, and aggregate-level
modeling, which focuses on the interaction of large hierarchical units.

VR-Forces also functions as a plan view display for viewing remote simulation
objects taking part in an exercise. Using the toolkit, you can extend the VR-Forces
application or create your own application for use with another user interface.
viii VT MAK

Preface — MAK Products
 VR-Vantage™. VR-Vantage is a line of products designed to meet your simulation
visualization needs. It includes three end-user applications (VR-Vantage Stealth,
VR-Vantage PVD, and VR-Vantage IG) and the VR-Vantage Toolkit.

– VR-Vantage Stealth displays a realistic, 3D view of your virtual world, a 2D plan
view, and an exaggerated reality (XR) view. Together these views provide both
situational awareness and the big picture of the simulated world. You can move
your viewpoint to any location in the 3D world and can attach it to simulation
objects so that it moves as they do.

– VR-Vantage IG is a configurable desktop image generator (IG) for out the
window (OTW) scenes and remote camera views. It has most of the features of
the Stealth, but is optimized for its IG function.

– VR-Vantage PVD provides a 2D plan view display. It gives you the big picture of
the simulated world.

– SensorFX. SensorFX is an enhanced version of VR-Vantage that uses physics
based sensors to view terrain and simulation object models that have been mate-
rially classified. It is built in partnership with JRM Technologies.

– The VR-Vantage Toolkit is a 3D visual application development toolkit. Use it
to customize or extend MAK’s VR-Vantage applications, or to integrate VR-
Vantage capabilities into your custom applications. VR-Vantage is built on top
of OpenSceneGraph (OSG). The toolkit includes the OSG version used to build
VR-Vantage.

 MAK Data Logger. The Data Logger, also called the Logger, can record HLA and
DIS exercises and play them back for after-action review. You can play a recorded
file at speeds above or below normal and can quickly jump to areas of interest. The
Logger has a GUI and a text interface. The Logger API allows you to extend the
Logger using plug-in modules or embed the Logger into your own application. The
Logger editing features let you merge, trim, and offset Logger recordings.

 VR-Exchange™. VR-Exchange allows simulations that use incompatible commu-
nications protocols to interoperate. For example, within the HLA world, using VR-
Exchange, federations using the HLA RPR FOM 1.0 can interoperate with simula-
tions using RPR FOM 2.0, or federations using different RTIs can interoperate.
VR-Exchange supports HLA, TENA, and DIS translation.

 VR-TheWorld™ Server. VR-TheWorld Server is a simple, yet powerful, web-
based streaming terrain server, developed in conjunction with Pelican Mapping.
Delivered with a global base map, you can also easily populate it with your own
custom source data through a web-based interface. The server can be deployed on
private, classified networks to provide streaming terrain data to a variety of simula-
tion and visualization applications behind your firewall.
VR-Forces Migration Guide ix

Preface — MAK Products
 DI-Guy™. The DI-Guy product line is a set of software tools for real-time human
visualization, simulation, and artificial intelligence. Every DI-Guy software offering
comes with thousands of ready-to-use characters, appearances, and motions. DI-
Guy enables the easy creation of crowds and individuals who are terrain aware,
autonomous, and react intelligently to ongoing events. Save time, money and
create outstanding simulations with DI-Guy. The DI-Guy product line includes
the following products:

– The DI-Guy SDK. Embed the DI-Guy library in your real-time application and
populate your world with lifelike human characters.

– DI-Guy Scenario™. Author and visualize human performances in a rich, user-
friendly graphical environment. Use DI-Guy Scenario as an end visualization
application or save scenarios and load them into your DI-Guy SDK enabled
application.

– ECOSim. Enhanced Company Operations Simulation (ECOSim) is a
company-level training simulation that teaches leaders how best to deploy
troops, UAVs, convoys, and other assets. ECOSim focuses on ease-of-use, rapid
scenario generation, runtime operator control, and realistic and reactive human
simulation.

– DI-Guy AI. Generate crowds of autonomous characters to quickly populate your
worlds with hundreds and thousands of terrain-aware, collision avoiding DI-
Guys. Used as a module on top of DI-Guy Scenario and DI-Guy SDK.

– Expressive Faces Module. Enable DI-Guy characters to have faces that display
emotion, eyes that look in directions and blink, and lips that sync to sound files.

– DI-Guy Motion Editor. Create or customize motions to your particular needs in
an easy-to-use graphical application.

 RadarFX. RadarFX is a client-server application that can simulates synthetic-aper-
ture radar (SAR). The server application, which is based on VR-Vantage and
SensorFX, loads a terrain database and, optionally, connects to simulations. A
client application requests SAR images from the server. VR-Forces includes a
sample client application.
x VT MAK

Preface — How to Contact Us
How to Contact Us
For VR-Forces technical support, information about upgrades, and information about
other MAK products, you can contact us in the following ways:

Telephone

E-mail

Internet

Post

When requesting support, please tell us the product you are using, the version, and the
platform on which you are running.

Call or fax us at: Voice:
Fax:

617-876-8085 (extension 3 for support)
617-876-9208

Sales and upgrade information:
Technical support:

VR-Vantage support:

info@mak.com
support@mak.com

MAK web site home page: www.mak.com

License key requests: www.mak.com/support/licenses/
get-licenses

Product version and platform information: www.mak.com/support/product-versions

For the free, unlicensed MAK RTI: www.mak.com/resources/bonus-material

MAK Community Forum: www.mak.com/connect/forum

Send postal correspondence to: VT MAK
150 Cambridge Park Drive, 3rd Floor
Cambridge, MA, USA 02140
VR-Forces Migration Guide xi

Preface — Document Conventions
Document Conventions
This manual uses the following typographic conventions:

Directory names are preceded with dot and slash characters that show their position
with respect to the VR-Forces home directory. For example, the directory
vrforces4.5/doc appears in the text as ./doc.

Monospaced Indicates commands or values you enter.

Monospaced Bold Indicates a key on the keyboard.

Monospaced Italic Indicates command variables that you replace with appropriate
values.

Blue text A hypertext link to another location in this manual or another
manual in the documentation set.

{ } Indicates required arguments.

[] Indicates optional arguments.

| Separates options in a command where only one option may be
chosen at a time.

(|) In command syntax, indicates equivalent alternatives for a
command-line option, for example, (-h | --help).

/ Indicates a directory. Since MAK products run on both Linux and
Windows PC platforms, we use the / (slash) for generic discus-
sions of pathnames. If you are running on a PC, substitute a \
(backslash) when you type pathnames.

Italic Indicates a file name, pathname, or a class name.

sans Serif Indicates a parameter or argument.

 Indicates a one-step procedure.

Menu  Option Indicates a menu choice. For example, an instruction to select
the Save option from the File menu appears as:

Choose File Save.

Click the icon to run a tutorial video in the default browser.

Indicates supplemental or clarifying information.

Indicates additional information that you must observe to ensure
the success of a procedure or other task.

Indicates that a section is valid only for entity-level scenarios.

Indicates that a section is valid only for aggregate-level
scenarios.

i
!

xii VT MAK

Preface — Third Party Licenses
DI-Guy Conventions

Table 1-1 lists the conventions used for entity coordinates in DI-Guy documentation.

Mouse Button Naming Conventions

An instruction to click the mouse button, refers to clicking the primary mouse button,
usually the left button for right-handed mice and the right button for left-handed mice.
The context-sensitive menu, also called a popup menu or right-click menu, refers to the
menu displayed when you click the secondary mouse button, usually the right button
on right-handed mice and the left button on left-handed mice.

Third Party Licenses
MAK software products may use code from third parties. This section contains the
license documentation required by these third parties.

Boost License

VR-Link, and all MAK software that uses VR-Link uses some code that is distributed
under the Boost License. All header files that contain Boost code are properly
attributed. The Boost web site is: www.boost.org.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a
copy of the software and accompanying documentation covered by this license (the
“Software”) to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom
the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all
copies of the Software, in whole or in part, and all derivative works of the Software,
unless such copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor.

Table 1-1: Coordinate system conventions

Convention Indicates

XYZ X = forward,
Y = to the left
Z = up

Yaw, Roll, Pitch Orientation is applied in the order YRP.
Yaw = rz – orientation about the vertical axis
Roll = rx – orientation about the fore-aft axis
Pitch = ry – orientation nose down, nose up
VR-Forces Migration Guide xiii

Preface — Third Party Licenses
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEAL-
INGS IN THE SOFTWARE.

libXML and libICONV

VR-Link and all MAK software that uses VR-Link, links in libXML and libICONV.
On some platforms the compiled libraries and header files are distributed with MAK
Products. MAK has made no modifications to these libraries. For more information
about these libraries please see the following web sites:

 The LGPL license is available at: http://www.gnu.org/licenses/lgpl.html.

 Information about IconV is at: http://www.gnu.org/software/libiconv/.

 Information about LibXML is at: http://xmlsoft.org/.

Lua

Some MAK products use the Lua programming language (www.lua.org). Its license is as
follows:

Copyright © 1994–2012 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEAL-
INGS IN THE SOFTWARE.
xiv VT MAK

Preface — Third Party Licenses
LizardTech

Portions of this computer program are copyright © 1995-2010 Celartem, Inc., doing
business as LizardTech. All rights reserved. MrSID is protected by U.S. Patent No.
5,710,835. Foreign Patents Pending.

Freefont OpenType Font Set

VR-Vantage applications and VR-Forces use the Freefont OpenType font set from the
Free Software Foundation. It is covered by the General Public License (GPL). For
details, please see: http://www.gnu.org/licenses/gpl.html

Autodesk Gameware Navigation

The following are registered trademarks or trademarks of Autodesk, Inc., in the USA
and other countries: 3ds Max, AutoCAD, Autodesk, DWF, DWG, DXF, Kynapse,
Maya, MotionBuilder, and Powered with Autodesk Technology.

osgoculusviewer Library

Copyright (c) 2013-2015, Swedish National Road and Transport Research Institute

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of the Swedish National Road and Transport Research Institute nor
the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
VR-Forces Migration Guide xv

Preface — Third Party Licenses
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Third-Party Licenses for VR-Vantage Applications

VR-Vantage applications use a variety of third-party libraries. Developers who want to
use these libraries may be required to purchase developer’s licenses. Please see section
1.2 in VR-Forces Front-End Developers Guide.
xvi VT MAK

VR-F
1. Migrating from VR-
Forces 3.12 to 4.0.3
The VR-Forces 4.x GUI is built with the VR-Vantage Toolkit, which is significantly
different from the VR-Forces 3.12 GUI API. This migration guide describes the major
differences between VR-Forces 3.12 and VR-Forces 4.0 through 4.0.3.

Getting Information About Objects.. 1-2

Storing Data ... 1-2

Managing Object Selection ... 1-3

Creating Symbols.. 1-4

Updating Symbols .. 1-5

Sending Messages to the Back-end.. 1-6

Adding Callbacks to Receive Messages .. 1-6

Keyboard and Mouse Handling .. 1-6

Changes to Signal Usage ... 1-7
Application Tick Notification .. 1-7
Selection Management ... 1-7
Tracking New Objects ... 1-8
Tracking Object Updates ... 1-8
Tracking Object Removals ... 1-9
1-1orces Migration Guide

Migrating from VR-Forces 3.12 to 4.0.3 — Getting Information About Objects
1.1. Getting Information About Objects
In VR-Forces 3.12 DtModelKey was used to find object information in various dictio-
naries, most notable the DtModelDataDictionary. In VR-Forces 4.x this has been
replaced with DtElementId. The DtElementId is the main key to use to look up data in
the system. For details, please see “Storing Data,” on page 1-2.

The API extends the element ID with the scene object ID. The scene object ID
(DtUniqueId) represents an individual screen representation of an object, given a partic-
ular model set. For example, the 2D representation of an object has a different scene
object ID than the 3D representation. If you have a scene object ID, you can use the
DtElementData object to retrieve the element ID based on scene object ID. If you need
a scene object ID from an element ID, the DtElementData can also do that mapping.

Selection sets (discussed in “Managing Object Selection,” on page 1-3) contain the
DtElementId of the objects selected. You can use these IDs to retrieve information about
selected objects.

1.2. Storing Data
In VR-Forces 3.12, DtModelData was used as the foundation for data storage, symbol
creation, and symbol updating. The DtModelData class does not exist in VR-Forces 4.x.
It has been replaced with the DtStateView. A DtStateView is a template class that takes a
DtSimState object as a template. This object is implemented as a subclass, and those
subclasses contains the data that represents the information about the object. In VR-
Forces 4.x, the main DtSimState objects are:

 DtVrlinkSimulatedBaseState. Information about any VR-Link-based object, such as
marking text, type, force

 DtVrlinkSimulatedEntityState. Information about VR-Link entities.

 DtVrlinkSimulatedAggregateState. Information about VR-Link aggregates.

 DtVrlinkSimulatedEnvironmentProcess. Information about VR-Link environmen-
tals.

 DtVrfObjectDataState. Information about an object that is VR-Forces-specific

When an object is discovered on the network, information about that object from its
VR-Link reflected object is placed into the appropriate object state. This state is added
to a queue for updating.

In VR-Forces 3.12, as soon as an object update was received over the network, it was
immediately updated. In VR-Forces 4.x this is not the case. Each object is updated at a
certain frame rate. This allows for better performance and control over when object
information is updated. For example, if an object is selected, its object update rate is
increased, assuming the user might want to know more information about this object.
This means all other objects continue to update at a default rate, or not at all. This does
not effect the position, speed, or orientation of the object, simply the additional data
that is transmitted to the front-end for that object.
1-2 VT MAK

Migrating from VR-Forces 3.12 to 4.0.3 — Managing Object Selection
This information is stored in DtStateViewCollection classes. Each DtStateViewCollection
keeps a list of all particular objects of a state view type and can be used to retrieve infor-
mation about that object type. So, for example, there are collections of entities, aggre-
gates, and environmental processes.

In VR-Forces the DtVrfStateViewCollectionManager manages all these collections. It is
your way of retrieving information about a particular object and its DtStateView infor-
mation. The DtVrfStateViewCollectionManager is analogous to the VR-Forces 3.12
DtModelDataDictionary class.

In the DtVrfStateViewCollectionManager, all objects that are in the system are stored in
the mySimulatedBaseStateViewCollection member. This member holds all structures
that are of a DtVrlinkSimulatedBaseState (which all state view objects subclass from).
Using the findStateView() methods of the DtVrfStateViewCollectionManager, you can
find the basic state view information about any object. This information can be
retrieved by marking text name or by DtElementId of the object. If you know that an
item is specifically an entity, aggregate, or environmental, you can use the state view
collection that is appropriate to find the state data for that object.

1.3. Managing Object Selection
In VR-Forces 3.12 you would use the map area of the currently active window to get a
list of objects that were currently selected. In VR-Forces 4.x you use the DtSelection-
Manager class to get the list of object selected, as follows:

DtSelectionManager::IdSet currentSelections =
DtSelectionManager::instance(myDe).currentSelection();

You can then iterate over the list to get information about these objects from the DtVrf-
StateViewCollectionManager:

DtSelectionManager::IdSet::const_iterator iter =
currentSelections.begin();

while (iter != currentSelections.end())
{

DtStateView<DtVrlinkSimulatedEntityState>* stateView =
const_cast<DtStateView<DtVrlinkSimulatedEntityState>*>(
DtVrfStateViewCollectionManager::instance(myDe).entityStateView()
->findStateView(*iter));

++iter;
}

VR-Forces 4.x also supplies a convenience class called the DtVrfSelectionHandler. This
class has methods for retrieving information about current selections. For example, if
you want to get data for all the currently selected objects, you can use the code in the
previous example or you could do the following:

std::vector<makVrv::DtSimEntry*> entries =
DtVrfSelectionHandler::instance(myDe).getSelectedEntries();
VR-Forces Migration Guide 1-3

Migrating from VR-Forces 3.12 to 4.0.3 — Creating Symbols
Remember that each DtSimEntry contains the list of all available data for that object.
Most objects in VR-Forces have two DtSimEntry views of data: the VR-Link State
Repository data (DtVrlinkSimulatedEntityState) and the VR-Forces-specific object data
(DtVrfObjectDataState). You can iterate over the simStates() of the state entry, dynami-
cally casting to the object in question that you want. Once the dynamic cast succeeds,
you can use that data.

1.4. Creating Symbols
In VR-Forces 3.12 if you wanted to affect the way that symbols were created, you
would override the DtMtlSymbolMapper, and install your own version.

In VR-Forces 4.x, symbols are created from DtVisualDefinitionSets. These visualizer sets
are organized in DtObjectDictionary classes. Each class of object (entity, aggregate, envi-
ronmental, interaction) has its own object dictionary. In order to affect the look of a
symbol, you can modify the object dictionary, adding your own DtVisualDefinition or
DtVisualDefinitionSet. The exampleObjectDictionary, exampleRangeLine and exam-
pleVisualDefinitionSet examples show how this is done.

Mapping entity type enumerations to models is now done in the Entity Type Mappings
dialog box rather than in symbol map files. Entity types are mapped to entity defini-
tions that contain the correct visualizer information for that entity type.

In VR-Forces 4.x, the actual visual definitions are not created in the main GUI thread.
A DtElement object (or a subclass) is created. It contains all the visualizers needed to
visualize an object. DtElement objects are created in the network thread and are
protected from the main thread. If you want to, in code, change how these items look,
you will need to do that before creation by changing the visual definition set for that
particular object. Individual visualizers, however, can be created to self configure given
certain conditions. The point being stressed here is that there has been an attempt to
move away from direct manipulation of the symbols and move towards a more object
oriented approach for symbol manipulation.

If you need to get access to an individual symbol, you can do this through the DtAgent-
Manager. Since each object is scene dependent, you will need to know the model set
you are referencing to get the scene object ID of the object you care about:

DtElementData::SceneObjectIdList ids;

myDe.dataBank().elementData().getSceneObjectIds(elementId, ids,
myDe.driverManager().inputDriver().
currentChannel()->currentModelSet());

DtUniqueID idToUse = elementId;

if (ids.size())
{

idToUse = ids[0];
}

DtAgentUpdateResolverInterface* updater =

myDe.agentManager().findUpdater(idToUse);

1-4 VT MAK

Migrating from VR-Forces 3.12 to 4.0.3 — Updating Symbols
if(updater)
{

DtSceneObject* sceneObject =
updater->castObjectTypeFromUpdater<DtSceneObject>("DtSceneObject");

if (sceneObject)
{

sceneObject->getPosition(0, dbLocation);
}

}

Please refer to the DtSceneObject class for the information you can retrieve.

1.5. Updating Symbols
In VR-Forces 3.12, in order to affect how a symbol was updated, you would have either
subclassed and installed your own version of the DtVrfGuiSymbolUpdater class or added
post update callbacks.

In VR-Forces 4.x there is no centralized symbol updater. Each visualizer is responsible
for doing its own updating. When a visualizer is created, it is handed a subclass of a
DtStateListener. This class contains all the simulation data necessary to drive the visuals
of an object. Signals are defined in these state listener subclasses that visualizers can
connect to in order to update their state.

If you want to change how an existing object is updating, you must subclass and install
that object into the DtVrlinkStateVisualizerFactory if this object has a VR-Link repre-
sentation, or the DtStateVisualizerFactory if it does not.

To add subclasses to the VR-Link state visualizer factory you must create driver accesso-
ries for the VR-Link protocol you want to change. (Please see the addAttr example for
an example of how to create an accessory.) You can then reference the VR-Link state
visualizer factory as in the slot_onSimCreated() method (in DtAddAttrGuiAccessory.inl):

DtVrlinkStateVisualizerFactory& visualizerStateFactory =
DtVrlinkStateVisualizerFactory::instance(
(DtVrlinkConnection*)connection);

visualizerStateFactory.addStateVisualizerCreator(
"DtEntityKinStateVisualizer", new MyEntityKinStateVisualizerCreator);

The same methodology can be used for the state visualizer factory:

DtWriteSettingsLock<DtSharedStateVisualizerFactory>
visualizerStateFactory(DtSharedSettingsManager::instance(myDe));

visualizerStateFactory.addStateVisualizerCreator(
"DtEntityKinStateVisualizer", new MyEntityKinStateVisualizerCreator);

i The scene objects are screen representations only and do not contain
simulation data.
VR-Forces Migration Guide 1-5

Migrating from VR-Forces 3.12 to 4.0.3 — Sending Messages to the Back-end
1.6. Sending Messages to the Back-end
In VR-Forces 3.12, to communicate with the back-end (sending sets, tasks or interface
content messages), the remote controller was used: DtVrfGuiAppEventCon-
troller::remoteController().

In VR-Forces 4.x there is no direct access to the remote controller from the GUI thread.
Since the GUI is not network dependent, the DtVrfSimMessager class was created to
interface the GUI to the back-end. This class should be used to send all messages. The
interface content example shows how to send interface content messages using DtVrf-
SimMessager.

1.7. Adding Callbacks to Receive Messages
In VR-Forces 3.12 the DtVrfMessageInterface class was used to register callback messages
for message types. In VR-Forces 4.x the DtVrfSimMessageHandler is used. The DtVrf-
SimMessager also interfaces with this class, and that can be used as well. The interface
content example shows how to register for a callback message using DtVrfSimMessage-
Handler.

1.8. Keyboard and Mouse Handling
In VR-Forces 3.12 you would subclass and install an event handler to handle mouse
events and keyboard events. You might also have subclassed and installed your own
version of the DtPvdMapArea or connected to signals to handle events.

In VR-Forces 4.x you subclass and install a DtEventProcessor. The DtEventProcessor
subclasses have methods for mouse and keyboard messages. If you want to handle a
mouse or keyboard message, override the appropriate method (processKeyboardEvent()
or processMouseEvent()). If you handle the message you can return true or false. You
can also be notified of events that were handled by other event processors before your
event processor got a chance, by overriding the above methods and handling the case of
a MouseLost event.

Add your event processor subclass into the DtInputDriver class. The DtInputDriver
object is referenced through the driver manager:

DtInputDriver& inputDriver = myDe.driverManager().inputDriver();

The event processor can be added to the front or the back of the list (addEventProces-
sorToFront() or addEventProcessorToBack()). You can also get the list of event proces-
sors and insert it directly (eventProcessorList()). The exampleEventProcessor example
has an example of how to use an event processor.
1-6 VT MAK

Migrating from VR-Forces 3.12 to 4.0.3 — Changes to Signal Usage
1.9. Changes to Signal Usage
VR-Forces 3.12 mostly used Qt signals. VR-Forces 4.x mostly uses Boost signals. While
some Qt signals are used in the Qt layer, they are usually translated back into Boost
signals.

To use a Boost signal you must connect to a signal and give a method to call when the
signal is invoked.

The following examples show how to connect to signals without parameters (preTick),
and with parameters (postTick). The binding is done to an object class and an instance
of that object.

myDe.signal_preTick.connect(boost::bind(&MyObject::method, this));
myDe.signal_postTick.connect(boost::bind(&MyObject::method, this, _1));

1.9.1. Application Tick Notification

In VR-Forces 3.12 there was no way to be notified when the application was about to
tick or had completed a tick. In VR-Forces 4.x, you can get this information. The main
class of a VR-Vantage application is DtDe. The DtDe class is typically passed to any
object that might need to use it, and is available to any plug-in on startup.

To be notified when the application is about to tick, connect to the signal_preTick
signal.

On a post tick, connect to the signal_postTick signal.

1.9.2. Selection Management

In VR-Forces 3.12, to find out when selections had changed, you would connect to the
Qt signal sent by the map area on selection changed (selectionUpdated, selection-
Changed, and so on). In VR-Forces 4.x, you use the Selection Manager and its signals
to be notified when selections have changed. You can get a reference to the Selection
Manager as follows:

DtSelectionManager& selManager = DtSelectionManager::instance(myDe);

! It is very important to disconnect signals when they are no longer needed or
when the object is freed. Failing to disconnect signals can lead to application
instability, as, unlike Qt signals, when the object is destroyed the signal is not
disconnected.
VR-Forces Migration Guide 1-7

Migrating from VR-Forces 3.12 to 4.0.3 — Changes to Signal Usage
The signal_currentSelectionChanged signal is sent any time the current selection is
changed. It supplies the following parameters:

 The current selection.

 What was unselected.

 The new selection type.

 The old selection type.

The IDs supplied are element IDs, which can be used to retrieve data about the selected
objects. “Managing Object Selection,” on page 1-3 explains how to use this informa-
tion.

The signal_vertexSelected and signal_vertexDeselected signals are sent when vertices on
a line are selected or unselected

1.9.3. Tracking New Objects

In VR-Forces 3.12, to find out when an object was added, you would have used the
modelDataAdded signal. In VR-Forces 4.x you use the DtElementData object. You can
get to the DtElementData as follows:

DtElementData& elementData = myDe.dataBank().elementData();

The signal signal_elementsAdded is sent for any elements added during that tick.

You can then use the State View Collection Manager to find information about the
elements added. Due to the nature of the multi-threading of the application, it is
possible that the state view data does not yet exist for those elements. In that case, for
the state view collection you want to retrieve information for, connect to the
signal_stateViewAdded signal. For example:

DtVrfStateViewCollectionManager::instance(myDe).
baseStateView()->signal_stateViewAdded

When the state view is added you can then get information about that object.

1.9.4. Tracking Object Updates

In VR-Forces 3.12, to be notified when an object was updated, you might have
installed your own version of the symbol updater or connected to the model data
dictionary’s modelDataUpdated signal. In VR-Forces 4.x you use the state view itself to
be notified when state view data is updated.

You first need to find the state view you are interested in:

DtStateView<DtVrlinkSimulatedEntityState>* stateView =
const_cast<DtStateView<DtVrlinkSimulatedEntityState>*>(
selHandler.entityStateView()->findStateView(principalSimEntryId));

stateView->signal_stateViewUpdated.connect(boost::bind(
&MyObject::slot_onPrincipalStateViewUpdated, this, _1));
1-8 VT MAK

Migrating from VR-Forces 3.12 to 4.0.3 — Changes to Signal Usage
You will now be notified when that object is updated. This is more efficient than the
way it was done in VR-Forces 3.12, because now you can be notified when a very
specific instance of the data you are interested in is updated.

1.9.5. Tracking Object Removals

In VR-Forces 3.12 you would have used the modelDataAboutToBeRemoved signal. In
VR-Forces 4.x you use the element data's signal_elementsToBeRemoved signal. This
provides a list of elements that are being removed in this tick. Please see “Tracking New
Objects,” on page 1-8 for how to retrieve a reference to the DtElementData.
VR-Forces Migration Guide 1-9

Migrating from VR-Forces 3.12 to 4.0.3 — Changes to Signal Usage
1-10 VT MAK

VR-F
2. Migrating from VR-
Forces 3.12 to 4.0.4
The VR-Forces 4.x GUI is built with the VR-Vantage Toolkit, which is significantly
different from the VR-Forces 3.12 GUI API. This migration guide describes the major
differences between VR-Forces 3.12 and VR-Forces 4.0.4.

Getting Information About Objects.. 2-2

Storing Data ... 2-2

Managing Object Selection ... 2-3

Creating Symbols.. 2-4
Creating Local (Unpublished) Symbols .. 2-5

Updating Symbols .. 2-5

Sending Messages to the Back-end.. 2-6

Adding Callbacks to Receive Messages .. 2-6

Keyboard and Mouse Handling .. 2-7

Changes to Signal Usage ... 2-7
Application Tick Notification .. 2-8
Selection Management ... 2-8
Tracking New Objects ... 2-8
Tracking Object Updates ... 2-9
Tracking Resources .. 2-9
Tracking Object Removals ... 2-9
2-1orces Migration Guide

Migrating from VR-Forces 3.12 to 4.0.4 — Getting Information About Objects
2.1. Getting Information About Objects
In VR-Forces 3.12 DtModelKey was used to find object information in various dictio-
naries, most notable the DtModelDataDictionary. In VR-Forces 4.x this has been
replaced with DtElementId. The DtElementId is the main key to use to look up data in
the system. For details, please see “Storing Data,” on page 2-2.

The API extends the element ID with the scene object ID. The scene object ID
(DtUniqueId) represents an individual screen representation of an object, given a partic-
ular model set. For example, the 2D representation of an object has a different scene
object ID than the 3D representation. If you have a scene object ID, you can use the
DtElementData object to retrieve the element ID based on scene object ID. If you need
a scene object ID from an element ID, the DtElementData can also do that mapping.

Selection sets (discussed in “Managing Object Selection,” on page 2-3) contain the
DtElementId of the objects selected. You can use these IDs to retrieve information about
selected objects.

2.2. Storing Data
In VR-Forces 3.12, DtModelData was used as the foundation for data storage, symbol
creation, and symbol updating. The DtModelData class does not exist in VR-Forces 4.x.
It has been replaced with DtObjectDataInterface. This class (and subclasses) let you
access data for any simulated object in the system:

 DtEntityDataInterface

 DtAggregateDataInterface

 DtTacticalGraphicDataInterface

 DtSpotReportDataInterface.

To retrieve information about objects, you can either use the object’s element ID or the
object’s name (marking text) from the DtVrfStateViewCollectionManager. The DtVrf-
StateViewCollectionManager class is analogous to the DtModelDataDictionary in VR-
Forces 3.12. In the DtVrfStateViewCollectionManager class you will use the lookupAnd-
CastObjectData() method to return a shared data pointer to the data you need. For
example, if you want to find an entity data:

DtEntityDataInterfacePtr data =
DtVrfStateViewCollectionManager::instance(myDe).lookupAndCastObjectDat
a<DtEntityDataInterface>("M1A2 1");

Also, the IDs in the current selection set can be used to look up data for selected
objects.
2-2 VT MAK

Migrating from VR-Forces 3.12 to 4.0.4 — Managing Object Selection
In VR-Forces 3.12, as soon as an object update was received over the network, it was
immediately updated. In VR-Forces 4.x this is not the case. Each object is updated at a
certain frame rate. This allows for better performance and control over when object
information is updated. For example, if an object is selected, its object update rate is
increased, assuming the user might want to know more information about this object.
This means all other objects continue to update at a default rate, or not at all. This does
not effect the position, speed, or orientation of the object, simply the additional data
that is transmitted to the front-end for that object.

This information is stored in DtStateViewCollection classes. Each DtStateViewCollection
keeps a list of all particular objects of a state view type and can be used to retrieve infor-
mation about that object type. So, for example, there are collections of entities, aggre-
gates, and environmental processes.

In VR-Forces the DtVrfStateViewCollectionManager manages all these collections. It is
your way of retrieving information about a particular object and its DtStateView infor-
mation. The DtVrfStateViewCollectionManager is analogous to the VR-Forces 3.12
DtModelDataDictionary class.

In the DtVrfStateViewCollectionManager, all objects that are in the system are stored in
the mySimulatedBaseStateViewCollection member. This member holds all structures
that are of a DtVrlinkSimulatedBaseState (which all state view objects subclass from).
Using the findStateView() methods of the DtVrfStateViewCollectionManager, you can
find the basic state view information about any object. This information can be
retrieved by marking text name or by DtElementId of the object. If you know that an
item is specifically an entity, aggregate, or environmental, you can use the state view
collection that is appropriate to find the state data for that object.

The guiObjectDataInterface example details how to use these data interface classes.

2.3. Managing Object Selection
In VR-Forces 3.12 you would use the map area of the currently active window to get a
list of objects that were currently selected. In VR-Forces 4.x you use the DtSelection-
Manager class to get the list of object selected, as follows:

DtSelectionManager::IdSet currentSelections =
DtSelectionManager::instance(myDe).currentSelection();

You can then iterate over the list to get information about these objects from the DtVrf-
StateViewCollectionManager:

DtSelectionManager::IdSet::const_iterator iter =
currentSelections.begin();

while (iter != currentSelections.end())
{

DtStateView<DtVrlinkSimulatedEntityState>* stateView =
const_cast<DtStateView<DtVrlinkSimulatedEntityState>*>(
DtVrfStateViewCollectionManager::instance(myDe).entityStateView()
->findStateView(*iter));

++iter;
VR-Forces Migration Guide 2-3

Migrating from VR-Forces 3.12 to 4.0.4 — Creating Symbols
}

VR-Forces 4.x also supplies a convenience class called the DtVrfSelectionHandler. This
class has methods for retrieving information about current selections. For example, if
you want to get data for all the currently selected objects, you can use the code in the
previous example or you could do the following:

std::vector<makVrv::DtSimEntry*> entries =
DtVrfSelectionHandler::instance(myDe).getSelectedEntries();

Remember that each DtSimEntry contains the list of all available data for that object.
Most objects in VR-Forces have two DtSimEntry views of data: the VR-Link State
Repository data (DtVrlinkSimulatedEntityState) and the VR-Forces-specific object data
(DtVrfObjectDataState). You can iterate over the simStates() of the state entry, dynami-
cally casting to the object in question that you want. Once the dynamic cast succeeds,
you can use that data.

2.4. Creating Symbols
In VR-Forces 3.12 if you wanted to affect the way that symbols were created, you
would override the DtMtlSymbolMapper, and install your own version.

In VR-Forces 4.x, symbols are created from DtVisualDefinitionSets. These visualizer sets
are organized in DtObjectDictionary classes. Each class of object (entity, aggregate, envi-
ronmental, interaction) has its own object dictionary. In order to affect the look of a
symbol, you can modify the object dictionary, adding your own DtVisualDefinition or
DtVisualDefinitionSet. The exampleObjectDictionary, exampleRangeLine and exam-
pleVisualDefinitionSet examples show how this is done.

Mapping entity type enumerations to models is now done in the Entity Type Mappings
dialog box rather than in symbol map files. Entity types are mapped to entity defini-
tions that contain the correct visualizer information for that entity type.

In VR-Forces 4.x, the actual visual definitions are not created in the main GUI thread.
A DtElement object (or a subclass) is created. It contains all the visualizers needed to
visualize an object. DtElement objects are created in the network thread and are
protected from the main thread. If you want to, in code, change how these items look,
you will need to do that before creation by changing the visual definition set for that
particular object. Individual visualizers, however, can be created to self configure given
certain conditions. The point being stressed here is that there has been an attempt to
move away from direct manipulation of the symbols and move towards a more object
oriented approach for symbol manipulation.

If you need to get access to an individual symbol, you can do this through the DtAgent-
Manager. Since each object is scene dependent, you will need to know the model set
you are referencing to get the scene object ID of the object you care about:

DtElementData::SceneObjectIdList ids;

myDe.dataBank().elementData().getSceneObjectIds(elementId, ids,
myDe.driverManager().inputDriver().
currentChannel()->currentModelSet());
2-4 VT MAK

Migrating from VR-Forces 3.12 to 4.0.4 — Updating Symbols
DtUniqueID idToUse = elementId;

if (ids.size())
{

idToUse = ids[0];
}

DtAgentUpdateResolverInterface* updater =

myDe.agentManager().findUpdater(idToUse);

if(updater)
{

DtSceneObject* sceneObject =
updater->castObjectTypeFromUpdater<DtSceneObject>("DtSceneObject");

if (sceneObject)
{

sceneObject->getPosition(0, dbLocation);
}

}

Please refer to the DtSceneObject class for the information you can retrieve.

2.4.1. Creating Local (Unpublished) Symbols

In VR-Forces 3.12 you could create unpublished symbols by creating an appropriate
DtModelData subclass and adding that model data into the application’s Model Data
Dictionary. You would then update that model data and mark it for update in the appli-
cation to change the symbol.

In VR-Forces 4.x, there is now a DtLocalObjectManager class that does this for you. The
guiLocalCreateObject example shows how to use this new class.

2.5. Updating Symbols
In VR-Forces 3.12, in order to affect how a symbol was updated, you would have either
subclassed and installed your own version of the DtVrfGuiSymbolUpdater class or added
post update callbacks.

In VR-Forces 4.x there is no centralized symbol updater. Each visualizer is responsible
for doing its own updating. When a visualizer is created, it is handed a subclass of a
DtStateListener. This class contains all the simulation data necessary to drive the visuals
of an object. Signals are defined in these state listener subclasses that visualizers can
connect to in order to update their state.

If you want to change how an existing object is updating, you must subclass and install
that object into the DtVrlinkStateVisualizerFactory if this object has a VR-Link repre-
sentation, or the DtStateVisualizerFactory if it does not.

i The scene objects are screen representations only and do not contain
simulation data.
VR-Forces Migration Guide 2-5

Migrating from VR-Forces 3.12 to 4.0.4 — Sending Messages to the Back-end
To add subclasses to the VR-Link state visualizer factory you must create driver accesso-
ries for the VR-Link protocol you want to change. (Please see the addAttr example for
an example of how to create an accessory.) You can then reference the VR-Link state
visualizer factory as in the slot_onSimCreated() method (in DtAddAttrGuiAccessory.inl):

DtVrlinkStateVisualizerFactory& visualizerStateFactory =
DtVrlinkStateVisualizerFactory::instance(
(DtVrlinkConnection*)connection);

visualizerStateFactory.addStateVisualizerCreator(
"DtEntityKinStateVisualizer", new MyEntityKinStateVisualizerCreator);

The same methodology can be used for the state visualizer factory:

DtWriteSettingsLock<DtSharedStateVisualizerFactory>
visualizerStateFactory(DtSharedSettingsManager::instance(myDe));

visualizerStateFactory.addStateVisualizerCreator(
"DtEntityKinStateVisualizer", new MyEntityKinStateVisualizerCreator);

2.6. Sending Messages to the Back-end
In VR-Forces 3.12, to communicate with the back-end (sending sets, tasks or interface
content messages), the remote controller was used: DtVrfGuiAppEventCon-
troller::remoteController().

In VR-Forces 4.x there is no direct access to the remote controller from the GUI thread.
Since the GUI is not network dependent, the DtGuiThreadVrfRemoteController class
interfaces the GUI to the back-end. Use this class to send all messages. The interface
content example and the guiThreadVrfRemoteController example show how to send
interface content messages using DtGuiThreadVrfRemoteController.

2.7. Adding Callbacks to Receive Messages
In VR-Forces 3.12 the DtVrfMessageInterface class was used to register callback messages
for message types. In VR-Forces 4.x the DtNetworkMessageCallbackManager class is
used. The DtGuiThreadVrfRemoteController also interfaces with this class, and that can
be used as well. The interface content example and the networkCallbackManager
example show how to register for a callback message using DtNetworkMessageCallback-
Manager.
2-6 VT MAK

Migrating from VR-Forces 3.12 to 4.0.4 — Changes to Signal Usage
2.8. Keyboard and Mouse Handling
In VR-Forces 3.12 you would subclass and install an event handler to handle mouse
events and keyboard events. You might also have subclassed and installed your own
version of the DtPvdMapArea or connected to signals to handle events.

In VR-Forces 4.x you subclass and install a DtEventProcessor. The DtEventProcessor
subclasses have methods for mouse and keyboard messages. If you want to handle a
mouse or keyboard message, override the appropriate method (processKeyboardEvent()
or processMouseEvent()). If you handle the message you can return true or false. You
can also be notified of events that were handled by other event processors before your
event processor got a chance, by overriding the above methods and handling the case of
a MouseLost event.

Add your event processor subclass into the DtInputDriver class. The DtInputDriver
object is referenced through the driver manager:

DtInputDriver& inputDriver = myDe.driverManager().inputDriver();

The event processor can be added to the front or the back of the list (addEventProces-
sorToFront() or addEventProcessorToBack()). You can also get the list of event proces-
sors and insert it directly (eventProcessorList()). The exampleEventProcessor example
has an example of how to use an event processor.

2.9. Changes to Signal Usage
VR-Forces 3.12 mostly used Qt signals. VR-Forces 4.x mostly uses Boost signals. While
some Qt signals are used in the Qt layer, they are usually translated back into Boost
signals.

To use a Boost signal you must connect to a signal and give a method to call when the
signal is invoked.

The following examples show how to connect to signals without parameters (preTick),
and with parameters (postTick). The binding is done to an object class and an instance
of that object.

myDe.signal_preTick.connect(boost::bind(&MyObject::method, this));
myDe.signal_postTick.connect(boost::bind(&MyObject::method, this, _1));

! It is very important to disconnect signals when they are no longer needed or
when the object is freed. Failing to disconnect signals can lead to application
instability, as, unlike Qt signals, when the object is destroyed the signal is not
disconnected.
VR-Forces Migration Guide 2-7

Migrating from VR-Forces 3.12 to 4.0.4 — Changes to Signal Usage
2.9.1. Application Tick Notification

In VR-Forces 3.12 there was no way to be notified when the application was about to
tick or had completed a tick. In VR-Forces 4.x, you can get this information. The main
class of a VR-Vantage application is DtDe. The DtDe class is typically passed to any
object that might need to use it, and is available to any plug-in on startup.

To be notified when the application is about to tick, connect to the signal_preTick
signal.

On a post tick, connect to the signal_postTick signal.

2.9.2. Selection Management

In VR-Forces 3.12, to find out when selections had changed, you would connect to the
Qt signal sent by the map area on selection changed (selectionUpdated, selection-
Changed, and so on). In VR-Forces 4.x, you use the Selection Manager and its signals
to be notified when selections have changed. You can get a reference to the Selection
Manager as follows:

DtSelectionManager& selManager = DtSelectionManager::instance(myDe);

The signal_currentSelectionChanged signal is sent any time the current selection is
changed. It supplies the following parameters:

 The current selection.

 What was unselected.

 The new selection type.

 The old selection type.

The IDs supplied are element IDs, which can be used to retrieve data about the selected
objects. “Managing Object Selection,” on page 2-3 explains how to use this informa-
tion.

The signal_vertexSelected and signal_vertexDeselected signals are sent when vertices on
a line are selected or unselected

2.9.3. Tracking New Objects

In VR-Forces 3.12, to find out when an object was added, you would have used the
modelDataAdded signal. In VR-Forces 4.x you use the DtElementData object. You can
get to the DtElementData as follows:

DtElementData& elementData = myDe.dataBank().elementData();

The signal signal_elementsAdded is sent for any elements added during that tick.
2-8 VT MAK

Migrating from VR-Forces 3.12 to 4.0.4 — Changes to Signal Usage
You can then use the State View Collection Manager to find information about the
elements added. Due to the nature of the multi-threading of the application, it is
possible that the state view data does not yet exist for those elements. In that case, for
the state view collection you want to retrieve information for, connect to the
signal_stateViewAdded signal. For example:

DtVrfStateViewCollectionManager::instance(myDe).
baseStateView()->signal_stateViewAdded

When the state view is added you can then get information about that object.

2.9.4. Tracking Object Updates

The object data interface allows you to change how often you want to have data
refreshed into the object and to be notified when that data is updated. The setUpdat-
eRate() method lets you set the update frequency. The boost signal_dataUpdated signal
is sent when data has been updated.

2.9.5. Tracking Resources

To track resources for entities, you can connect to the signal_resourcesChanged()
method of the data interface class and then inspect the resources() method to see the
resources. You can request new resources by calling the requestResources() method.

2.9.6. Tracking Object Removals

In VR-Forces 3.12 you would have used the modelDataAboutToBeRemoved signal. In
VR-Forces 4.x, you use the element data's signal_elementsToBeRemoved signal. This
provides a list of all the elements that are being removed in this tick. Please see
“Tracking New Objects,” on page 2-8 for how to retrieve a reference to the DtElement-
Data.

You can also track the removal of specific objects. The boost signal_dataRemoved is
sent from the data interface when a simulated object is removed.
VR-Forces Migration Guide 2-9

Migrating from VR-Forces 3.12 to 4.0.4 — Changes to Signal Usage
2-10 VT MAK

VR-F
3. Simulation Model Set
Changes in VR-Forces
4.0.4
This chapter summarizes changes to system definitions and OPE files.

Simulation Model Set Changes ... 3-2
Flight Command Controllers ... 3-2
Weapon Interface ... 3-2
Radar Modes .. 3-3
Weapon Enhancements.. 3-3
Range Rings ... 3-3
Ammo Select Tables ... 3-3
3-1orces Migration Guide

Simulation Model Set Changes in VR-Forces 4.0.4 — Simulation Model Set Changes
3.1. Simulation Model Set Changes
Changes to the SMS are organized by component or system type.

3.1.1. Flight Command Controllers

Air domain Movement Systems. The flight-command-controller was added to Fixed-
wing and rotary-wing entities to handle new flight tasks. (For details, please see fixed-
WingFlightCommandController.h and rotaryWingFlightCommandController.h.) If
you have created your own air domain movement systems, you must add this controller
to take advantage of these new tasks and behavior.

3.1.2. Weapon Interface

The target-priorities parameters have moved. They are no longer part of the target
selection controller. They are now in the weapon controllers inside the weapon systems,
as follows:

 target-selection-controller:

– Target priorities have been removed from the target selection controller (moved
into weapons).

– The target-select-controller:weapon-system connections have
been removed. The target-selection-controller to sensor connections remain.

– The controller uses DtComponentDescriptor (component-descriptor) for the
descriptor type).

 Weapon systems:

– Target priorities have been added into the weapon controllers. The target-selec-
tion-criteria parameter has been renamed to targeting-control.

– Target priority metadata has been removed.

– For ballistic weapons, the system:target-list connection is now
<controllerName>:target-to-acquire. Please see 125mm-gun.sysdef
for an example.

– Missile Weapons. The system:target-list input connection has been
removed.

Laser designators have the same changes as weapon systems. They also now have the
parameter integrated-with-launcher, which determines how target input works (either
from the launcher controller, if integrated, or the target selection controller directly if
not).

Apache. The laser designator that went along with the laser-guided-hellfire-missile
launcher has been moved into the launcher.
3-2 VT MAK

Simulation Model Set Changes in VR-Forces 4.0.4 — Simulation Model Set Changes
The laser-guided-hellfire-missile-launcher system has the following changes:

 Uses the new controller integrated-laser-guided-launcher-controller.

 The laser designator that used to be on the entity is now in this system.

 A new connection (connect missile-launcher:target-to-acquire laser-
controller:target-list) was added to represent the missile launcher providing targets
to the laser designator.

3.1.3. Radar Modes

Emitter systems now defines a radar-mode-list, each one of which defines a beam-list so
these can be switched at runtime. For more information, please see Section 10.5,
“Configuring Emitters”, in VR-Forces Configuration Guide.

3.1.4. Weapon Enhancements

In weapon systems the munition-wrapper resource “ammo” has been removed. Indi-
vidual munitions are now regular resources.

Ballistic guns have two changes:

 Burst fire. Some ballistic guns now fire in bursts. The rounds-per-minute and
extra-time-between-bursts parameters were added to the ballistic gun controller.

 Magazine-based reloading. The rounds-per-magazine parameter was added for
magazine-based reloading.

3.1.5. Range Rings
 Weapon systems. The range-name parameter was added to ballistic weapon actua-

tors and missile launcher controllers. This is the display name for range items asso-
ciated with this weapon displayed in the GUI.

 Aggregate OPE files. The range-name parameter was added. The combat-range-
controller was added to define range rings that can represent disaggregation ranges
or subordinate weapon systems.

 Munition OPE files. The range-name parameter was added to the missile/torpedo
entity definition to display missile range.

3.1.6. Ammo Select Tables

For weapons that fire a burst, hit probability is for the whole burst.

New weapons have been added, so if you have made your own damage system, you may
have to make a new damage table to add new mappings.
VR-Forces Migration Guide 3-3

Simulation Model Set Changes in VR-Forces 4.0.4 — Simulation Model Set Changes
3-4 VT MAK

VR-F
4. Migration to VR-Forces
4.1
This chapter lists changes to the APIs for VR-Forces 4.1. For occasional updates to
migration information, please check http://www.mak.com/support/migration-
support.html.

API Changes ... 4-2

Simulation Model Set Changes ... 4-3
4-1orces Migration Guide

Migration to VR-Forces 4.1 — API Changes
4.1. API Changes
VR-Forces has the following changes to its APIs:

 Tasks, Sets and Reports now use a string as a type identifier instead of an integer.

 Simulation engine:

– The simulation engine now supports streaming and paging of feature data. The
API has been updated to add this support. (For details, please see section 15.6 in
VR-Forces Developers Guide.)

– DtSimComponent now has a virtual preFirstTickInit() method, called before the
first call to tick().

 GUI:

– The DtNetworkMessageCallbackManager class was renamed to DtGuIThreadNet-
workCallbackManager.

– For attributes and capabilities settings, the attributes.mtl and capabilities.mtl files
are no longer used. The values are read from the SISO .xml file. All items should
now be SISO compliant.

– dis-entity-types.csv is no longer used in the Entity Editor or //front-end for
selecting entity types. The SISO .xml file is now used.

– Many GUI elements are now available to create via the DtVrfTaskSetVariable-
WidgetManager. Any parameter that is added to a scripted tasked is created using
this factory. The list of GUI elements that can be created are in vrfScripted-
Tasks.h.

– Task, Set and Create menu configuration is now initially set from configurations
found in the DtVrfSimulationManager. The menuManipulation example has
been modified to show the new usage.

The VR-Vantage Control Toolkit has the following changes:

 View control messages are sent using DtDataInteractions. DtDataInteractions
provide a receiverId field. The recieverId's siteId and applicationId are now used
when processing view control messages. If these match the siteId and applicationId
of the connection receiving the message, the message is processed. The message is
also processed if siteId and applcationId are both -1's (wildcards). For backwards
compatibility, siteid/applicationId of 0/0 is also processed.

 Some view control messages control observer-specific settings. These messages now
let you specify the name of an observer mode to modify. If no observer mode is
specified, then these commands affect all observer modes currently in use. If an
observer mode is specified, then only that observer mode is affected.
4-2 VT MAK

Migration to VR-Forces 4.1 — Simulation Model Set Changes
4.2. Simulation Model Set Changes
Most entity OPE files now have a the new script-controller controller that enables the
Lua scripting feature on the entity. See the M1A2_1_1_1_255_1_1_3_-1.ope file in
.\data\simulationModelSets\default for an example.

The default-task-rules.tsk file, which controls task concurrency, has changed in format.
If you created your own tasks and needed edited this file, you will need to update it.

If you modified any files in the gui folder of the simulation model set, these files have
been altered a bit and will need to be updated.

If you created movement system definition (sysdef) files or modified the defaults, note
the following changes:

 The path-movement controller has been removed from all systems and OPE files
and should not be in any of the files.

 The convoy-task-controller has changed how it finds roads. See ground-disaggre-
gated-movement.ssydef in \data\simulationModelSets\default\systems\movement
for an example.

 Some movement sysdef files now have a compatibility-controller, This is because
we have removed the plan-and-move-to tasks. Any scenarios that had plans with
these tasks will still work if those entities have the compatibility-controller. See
ground-wheels-off-road.sysdef in \data\simulationModel-
Sets\default\systems\movement for an example.

 The rail-path-movement controller has been simplifed a bit and some parameters
have changed. See ground-wheels-off-road.sysdef in \data\simulationModel-
Sets\default\systems\movement for an example.

 The obstruction-sensor sensor has some different parameters for obstacle avoid-
ance. See air-cushion-default.sysdef in \data\simulationModel-
Sets\default\systems\movement for an example.
VR-Forces Migration Guide 4-3

Migration to VR-Forces 4.1 — Simulation Model Set Changes
4-4 VT MAK

VR-F
5. Migration to VR-Forces
4.2
This chapter lists changes to the APIs for VR-Forces 4.1. For occasional updates to
migration information, please check http://www.mak.com/support/migration-
support.html.

Changes to the Object Parameters Database ... 5-2
Migrating Legacy Simulation Model Sets to the VR-Forces 4.2 Format . 5-3

Changes to the Lua API .. 5-3
5-1orces Migration Guide

Migration to VR-Forces 4.2 — Changes to the Object Parameters Database
5.1. Changes to the Object Parameters Database
The object parameters database has been significantly changed. Going forward, these
changes should make it much easier to migrate customized simulation model sets to
new releases. It will also make it easier to add new entity simulation models.

The “higher level” organization of the OPD now consists of a set of “platforms” and
entity files. The platforms are generic OPE files that represent the basic entity and
object types, such as ground platforms, surface platforms, line objects, area objects, and
so on. These files use the familiar MTL format. It is expected that platforms will rarely
change. Any changes to a platform affect all entities of that platform type.

Individual entities no longer have OPE files. Entity specific parameters are saved in
XML files with the .entity extension. As with the OPE files used in the past, entity files
reference the systems that an entity supports. Systems continue to be specified in system
definition files in MTL format. Other SMS files such as damage files, detection files,
formation files, and so on have not changed from previous releases.

The Entity Editor has been updated to use these new entity files. Although the physical
layout has changed, for the most part its usage remains the same as in the previous
release. When you edit an entity you now just edit its entity file. When you create a new
entity, you create a new entity file. The entity file also contains the object type, which
used to be in vrfSim.opd and the menu details that used to be in entity.mst.

The OPD Editor no longer edits individual entity parameters. It lets you edit platforms
and systems. Changes to platforms and systems affect all entities that use them.

The result of these changes is that to add a new entity, you create a new entity file in the
Entity Editor. To migrate to a new release, you simply copy your custom entity files
(and any files that they reference) into the SMS in the new release. The entity file will
pick up any changes made to the platforms for the new release. You no longer have to
update OPE files and vrfSim.opd. vrfSim.opd still exists, but simply contains variable
bindings for the platforms.

You will still also have to update entity type mappings and model definitions for your
custom entities.
5-2 VT MAK

Migration to VR-Forces 4.2 — Changes to the Lua API
5.1.1. Migrating Legacy Simulation Model Sets to the VR-Forces 4.2 Format

The Entity Editor has a built-in tool that can upgrade simulation model sets from VR-
Forces 3.12 through 4.1.1 to the new format.

To migrate a simulation model set to VR-Forces 4.2:

1. Open the Entity Editor.

2. Choose File  Upgrade Old Simulation Model Set. The Select SMS to Upgrade
dialog box opens.

3. Select the SMS that you want to upgrade.

4. In the New SMS Name text box, type a name for the upgraded SMS.

5. Click Finish.

The Entity Editor displays a status window. It copies files from the current default SMS
to the new SMS. Then it converts files from the old SMS to the new format.

5.2. Changes to the Lua API
The Lua function vrf::getSimObjectsNear() no longer includes the calling entity in the
list. Scripts that used this function might not work correctly any more. For example, if
a script checks the size of the returned list and considers a list size of 1 as being empty
(because it wants to ignore itself), it will now incorrectly think the list is empty when
there is one other entity in the area. If you have a script that uses this function you
should examine it to determine whether or not you need to change the code to account
for the new behavior.
VR-Forces Migration Guide 5-3

Migration to VR-Forces 4.2 — Changes to the Lua API
5-4 VT MAK

VR-F
6. Migration to VR-Forces
4.3
This chapter describes migration issues from VR-Forces 4.2 to 4.3.

Changes to Simulation Model Sets.. 6-2

API Changes ... 6-3
6-1orces Migration Guide

Migration to VR-Forces 4.3 — Changes to Simulation Model Sets
6.1. Changes to Simulation Model Sets
Prevous versions of VR-Forces provided one simulation model set (SMS) – default.sms.
VR-Forces 4.3 introduces an aggregate warfare model. Because entity modeling for
aggregate warfare is quite different from that in prevous versions of VR-Forces, a new
SMS, AggregateLevel.sms, was required. Entity-level modeling, which descrbes the entity
modeling in previous versions of VR-Forces, is now provided by EntityLevel.sms, which
essentially replaces default.sms.

Although aggregate-level modeling and entity-level modeling are quite different, they
do share some common objects. To minimize duplication of common objects in
multiple SMSs and to support greater ease of SMS customization, VR-Forces 4.3 intro-
duces the ability for SMSs to include other SMSs. The objects that are common to
EntityLevel.sms and AggregateLevel.sms are contained in base.sms, which is included in
both of the other SMSs.

If you load a scenario in VR-Forces 4.3 that references default.sms, VR-Forces automat-
ically loads EntityLevel.sms. When you save the scenario, it updates it to the new SMS.
Therefore, most legacy scenarios should migrate easily to VR-Forces 4.3. If you are
using a customized SMS, you will have to evaluate your customizations and decide how
to upgrade.

For general details about including SMSs in other SMSs, please see Section 5.3, “Simu-
lation Model Sets”, in VR-Forces Configuration Guide. For specific migration options,
please see Section 5.3.7, “Migrating a Simulation Model Set to a New Release”, in VR-
Forces Configuration Guide.
6-2 VT MAK

Migration to VR-Forces 4.3 — API Changes
6.2. API Changes
VR-Forces has the following changes to its APIs. For occasional updates to migration
information, please check http://www.mak.com/support/migration-support.html.

 We have renamed a lot of header files for clarity, so that they will better match class
names and make things easier to find. This release includes tools to help make this
part of the upgrade process easy:

– In the compatibility folder, there is a command line tool you can run to upgrade
the header file references in your code. Instructions for how to do this are in
./compatibility/readme.txt.

– Alternatively, header files with the old names have been added to
./include/compatibility. They point to the new files. You can add this directory to
your project's include paths.

 In HLA, VR-Forces can change the transport type Data interactions at run time
based on the content type of the message. Before sending a message, VR-Forces
checks to see if it should be best-effort or reliable. If the current setting does not
match what is required for the content type of the message, it makes an RTI service
call to update the transport type.

 DtVrfMessageInterface has new methods to allow a plug-in to change transport types
as well.

 The DtIfServerStatus message now contains, by back-end, the number of entities
(by kind and domain) that are being simulated on that back-end. When a scenario
is loaded, the signal_allScenarioObjectsDiscovered signal is sent from the DtVrfSce-
narioManager.

 By default, the following content types are sent reliable. Everything else is best-
effort.

– DtRemoveFromOrganizationType

– DtSetSubordinateOrderType

– DtAddToOrganizationType

– DtIfObjectIndexMessageType

– DtScriptedTaskResponseMessageType.
VR-Forces Migration Guide 6-3

Migration to VR-Forces 4.3 — API Changes
6-4 VT MAK

VR-F
7. Migration to VR-Forces
4.4
This chapter describes migration issues from VR-Forces 4.3 to 4.4.

UUID Replaces Object Name for Identifying Objects 7-2
Loading Legacy Scenarios ... 7-2
API Changes .. 7-2

Changes to VR-Link’s DtVector ... 7-3
7-1orces Migration Guide

Migration to VR-Forces 4.4 — UUID Replaces Object Name for Identifying Objects
7.1. UUID Replaces Object Name for Identifying Objects
VR-Forces 4.4 uses a VR-Forces UUID as a unique identifier. Simulation objects and
tactical graphics can now have the same names, but can still be identified as unique
objects. This makes collaborative creation of scenarios and merging scenarios an easy
process. As part of this transition, the Scenario Merge tool has been dropped. You can
now merge scenarios simply by importing them into an open scenario in the VR-Forces
front-end.

7.1.1. Loading Legacy Scenarios

When you load or import a scenario created in VR-Forces 4.3.x or earlier, all simulation
objects are given new unique IDs. These unique IDs replace simulation object names in
all locations where they are used, such as plans and the order of battle file.

When a legacy scenario is loaded (or imported) the DtUUID, DtRwUUID, and
DtUUIDMarkingTextResolution managers convert object names to new UUIDs. A
marking text to UUID mapping is created in the marking text, and all the marking text
entries are then remapped to their new UUIDs. This will occur in any place that an
object name is used as an identifier (plans, tasks, sets, and so on).

This process is transparent to the end user. Simulation objects are still be referenced by
object name and all operations still work on object names from the users perspective.

7.1.2. API Changes

Wherever marking text used to be used to address objects, the object’s UUID will be
used. If you are sending messages to objects and are using the objectName() in a
message, for example:

msg.setObjectName(obj->objectName());

you will now use the object's UUID:

msg.setUUID(obj->uuid());

If you have written controllers, process state repositories, tasks, sets, and so on, that use
DtRwString as an identifier for an object to apply an operation to, all you need to do to
migrate your code is change DtRwString to DtRwUUID.

i It is still possible to use the marking text of the object, for example:

msg.setUUID(obj->markingText());

However, using old style code is not recommended. If you do not use the
UUID, scenarios cannot use duplicate simulation object names and end users
will lose the benefit of this change. For example, importing scenarios will not
be guaranteed to work.
7-2 VT MAK

Migration to VR-Forces 4.4 — Changes to VR-Link’s DtVector
If you make this change, when you load a scenario, VR-Forces remaps what used to be
the marking text to the new UUID representation. In the debugger you will see that the
UUID also has a text pointer to the object (via marking text) that this represents.

If you have created methods that take an object name, such as:

void MyClass::setObjectName(const DtString&);

when you change your member to a DtRwUUID you should also change this proto-
type:

void MyClass::setUUID(const DtUUID&);

When looking up DtVrfObjects in the object manager you can now use:

lookupVrfObjectByUUID

7.2. Changes to VR-Link’s DtVector
In VR-Link 5.2, DtVector has been split into DtVector32 and DtVector64. (DtVector64 is
aliased to DtVector.) All functions that take velocity, acceleration, and embedded posi-
tion information have been converted into DtVector32. This was done because DIS and
the RPR FOM use 32-bit values for those fields and customers using our standard
DtVector were seeing small rounding issues due to conversion to and from 32-bits when
the data was passed over the network. Unfortunately, this also affects a large number of
classes in VR-Link.

This change is unlikely to require changes to VR-Forces code. However, it is pointed
out here just in case. For more information, please see VR-Link 5.2 Release Notes and
class documentation.

i If you pass in marking text, this call also tries to look up the object by
marking text. However, this is not recommended, because it will not allow
the controller to work with similarly named objects.
VR-Forces Migration Guide 7-3

Migration to VR-Forces 4.4 — Changes to VR-Link’s DtVector
7-4 VT MAK

VR-F
8. Migration to VR-Forces
4.5
This chapter describes migration issues from VR-Forces 4.3 to 4.4.

API Changes ... 8-2
8-1orces Migration Guide

Migration to VR-Forces 4.5 — API Changes
8.1. API Changes
If your application or plug-in adds visualizer definitions to entity element definitions
in the initDeModule, they now need to be added after the signal_postLoadVisual boost
signal is sent from the DtVrfScenarioManager.

Scenario rewind now uses the scenario rollback functionality. Previously you would
add callbacks for scenario rewound when a scenario was rewound from the GUI. You
must now add callbacks for addPreLoadScenarioCallback() and addPostLoadScenario-
Callback() in the DtCgf class.
8-2 VT MAK

VR-F
Index
A
API, Lua 5-3

B
back-end, communicating with 1-6, 2-6
Boost, signal 1-7, 2-7

C
callback, messages 1-6, 2-6
class

DtAgentManager 1-4, 2-4
DtAggregateDataInterface 2-2
DtDe 1-7, 2-8
DtElement 1-4, 2-4
DtElementData 1-2, 1-8, 1-9, 2-2, 2-8, 2-9
DtElementId 1-2, 1-3, 2-2, 2-3
DtEntityDataInterface 2-2
DtEventProcessor 1-6, 2-7
DtGuiThreadVrfRemoteController 2-6
DtInputDriver 1-6, 2-7
DtLocalObjectManager 2-5
DtModelData 1-2, 2-2, 2-5
DtModelDataDictionary 1-2, 1-3, 2-2, 2-3
DtModelKey 1-2, 2-2
DtMtlSymbolMapper 1-4, 2-4
DtNetworkMessageCallbackManager 2-6
DtObjectDataInterface 2-2
DtObjectDictionary 1-4, 2-4
DtPvdMapArea 1-6, 2-7
DtSceneObject 1-5, 2-5
DtSelectionManager 1-3, 2-3
DtSimEntry 1-4, 2-4
orces Migration Guide
DtSimState 1-2
DtSpotReportDataInterface 2-2
DtStateListener 1-5, 2-5
DtStateView 1-2
DtStateViewCollection 1-3, 2-3
DtStateVisualizerFactory 1-5, 2-5
DtTacticalGraphicDataInterface 2-2
DtVisualDefinition 1-4, 2-4
DtVisualDefinitionSets 1-4, 2-4
DtVrfGuiSymbolUpdater 1-5, 2-5
DtVrfMessageInterface 1-6, 2-6
DtVrfObjectDataState 1-2, 1-4, 2-4
DtVrfSelectionHandler 1-3, 2-4
DtVrfSimMessageHandler 1-6
DtVrfSimMessager 1-6
DtVrfStateViewCollectionManager 1-3, 2-2, 2-3
DtVrlinkSimulatedAggregateState 1-2
DtVrlinkSimulatedBaseState 1-2, 1-3, 2-3
DtVrlinkSimulatedEntityState 1-2, 1-4, 2-4
DtVrlinkSimulatedEnvironmentProcess 1-2
DtVrlinkStateVisualizerFactory 1-5, 2-5

creating, symbols 1-4, 2-4

D
data

looking up 1-2, 2-2
storing 1-2, 2-2

DtAgentManager class 1-4, 2-4
DtAggregateDataInterface class 2-2
DtDe class 1-7, 2-8
DtElement class 1-4, 2-4
DtElementData class 1-2, 1-8, 1-9, 2-2, 2-8, 2-9
DtElementId class 1-2, 1-3, 2-2, 2-3
DtEntityDataInterface class 2-2
i-1

Index
DtEventProcessor class 1-6, 2-7
DtGuiThreadVrfRemoteController class 2-6
DtInputDriver class 1-6, 2-7
DtLocalObjectManager class 2-5
DtModelData class 1-2, 2-2, 2-5
DtModelDataDictionary class 1-2, 1-3, 2-2, 2-3
DtModelKey class 1-2, 2-2
DtMtlSymbolMapper class 1-4, 2-4
DtNetworkMessageCallbackManager class 2-6
DtObjectDataInterface class 2-2
DtObjectDictionary class 1-4, 2-4
DtPvdMapArea class 1-6, 2-7
DtSceneObject class 1-5, 2-5
DtSelectionManager class 1-3, 2-3
DtSimEntry class 1-4, 2-4
DtSimState class 1-2
DtSpotReportDataInterface class 2-2
DtStateListener class 1-5, 2-5
DtStateView class 1-2
DtStateViewCollection class 1-3, 2-3
DtStateVisualizerFactory class 1-5, 2-5
DtTacticalGraphicDataInterface class 2-2
DtUniqueId 1-2, 2-2
DtVisualDefinition class 1-4, 2-4
DtVisualDefinitionSets class 1-4, 2-4
DtVrfGuiSymbolUpdater class 1-5, 2-5
DtVrfMessageInterface class 1-6, 2-6
DtVrfObjectDataState class 1-2, 1-4, 2-4
DtVrfSelectionHandler class 1-3, 2-4
DtVrfSimMessageHandler class 1-6
DtVrfSimMessager class 1-6
DtVrfStateViewCollectionManager class 1-3, 2-2, 2-

3
DtVrlinkSimulatedAggregateState class 1-2
DtVrlinkSimulatedBaseState class 1-2, 1-3, 2-3
DtVrlinkSimulatedEntityState class 1-2, 1-4, 2-4
DtVrlinkSimulatedEnvironmentProcess class 1-2
DtVrlinkStateVisualizerFactory class 1-5, 2-5

E
element, ID 1-2, 2-2
Entity Editor 5-2
entity type, mapping to model 1-4, 2-4

F
function, getSimObjectsNear() 5-3
i-2
G
getSimObjectsNear() function 5-3

I
ID

element 1-2, 2-2
scene object 1-2, 2-2

information, object 1-2, 2-2

K
keyboard 1-6, 2-7

L
looking up data 1-2, 2-2
Lua, API 5-3

M
mapping, model to entity type 1-4, 2-4
message, keyboard and mouse 1-6, 2-7
messages, callback 1-6, 2-6
model, mapping to entity type 1-4, 2-4
mouse 1-6, 2-7
MTL 5-2

N
new, object 1-8, 2-8

O
object

information 1-2, 2-2
new 1-8, 2-8
reflected 1-2
selecting 1-3, 2-3
updates 1-8
VR-Link 1-2

object parameters database 5-2
OPD 5-2
OPE file 5-2

P
platform, file 5-2
VT MAK

Index
Q
Qt, signal 1-7, 2-7

R
reflected, object 1-2
remote controller 1-6, 2-6

S
scene object, ID 1-2, 2-2
selecting, objects 1-3, 2-3
selection, managing 1-7, 2-8
signal

Boost 1-7, 2-7
Qt 1-7, 2-7

simulation model set 5-2
SMS 5-2
storing, data 1-2, 2-2
symbol

creating 1-4, 2-4
updating 1-5, 2-5

T
tick(), notification 1-7, 2-8

U
updates, object 1-8
updating, symbols 1-5, 2-5

V
visualizer 1-5, 2-5
vrfSim.opd 5-2
VR-Link, objects 1-2
VR-Forces Migration Guide
 i-3

Index
i-4
 VT MAK

Link - Simulate - Visualize

VRF-4.5-9-170221

150 CAMBRIDGE PARK DRIVE, 3RD FLOOR CAMBRIDGE, MA 02140 617.876.8085 www.mak.com

	Title Page
	Contents
	Preface
	VR-Forces Documentation
	MAK Products
	How to Contact Us
	Telephone
	E-mail
	Internet
	Post

	Document Conventions
	DI-Guy Conventions
	Mouse Button Naming Conventions

	Third Party Licenses
	Boost License
	libXML and libICONV
	Lua
	LizardTech
	Freefont OpenType Font Set
	Autodesk Gameware Navigation
	osgoculusviewer Library
	Third-Party Licenses for VR-Vantage Applications

	1. Migrating from VR- Forces 3.12 to 4.0.3
	1.1. Getting Information About Objects
	1.2. Storing Data
	1.3. Managing Object Selection
	1.4. Creating Symbols
	1.5. Updating Symbols
	1.6. Sending Messages to the Back-end
	1.7. Adding Callbacks to Receive Messages
	1.8. Keyboard and Mouse Handling
	1.9. Changes to Signal Usage
	1.9.1. Application Tick Notification
	1.9.2. Selection Management
	1.9.3. Tracking New Objects
	1.9.4. Tracking Object Updates
	1.9.5. Tracking Object Removals

	2. Migrating from VR- Forces 3.12 to 4.0.4
	2.1. Getting Information About Objects
	2.2. Storing Data
	2.3. Managing Object Selection
	2.4. Creating Symbols
	2.4.1. Creating Local (Unpublished) Symbols

	2.5. Updating Symbols
	2.6. Sending Messages to the Back-end
	2.7. Adding Callbacks to Receive Messages
	2.8. Keyboard and Mouse Handling
	2.9. Changes to Signal Usage
	2.9.1. Application Tick Notification
	2.9.2. Selection Management
	2.9.3. Tracking New Objects
	2.9.4. Tracking Object Updates
	2.9.5. Tracking Resources
	2.9.6. Tracking Object Removals

	3. Simulation Model Set Changes in VR-Forces 4.0.4
	3.1. Simulation Model Set Changes
	3.1.1. Flight Command Controllers
	3.1.2. Weapon Interface
	3.1.3. Radar Modes
	3.1.4. Weapon Enhancements
	3.1.5. Range Rings
	3.1.6. Ammo Select Tables

	4. Migration to VR-Forces 4.1
	4.1. API Changes
	4.2. Simulation Model Set Changes

	5. Migration to VR-Forces 4.2
	5.1. Changes to the Object Parameters Database
	5.1.1. Migrating Legacy Simulation Model Sets to the VR-Forces 4.2 Format

	5.2. Changes to the Lua API

	6. Migration to VR-Forces 4.3
	6.1. Changes to Simulation Model Sets
	6.2. API Changes

	7. Migration to VR-Forces 4.4
	7.1. UUID Replaces Object Name for Identifying Objects
	7.1.1. Loading Legacy Scenarios
	7.1.2. API Changes

	7.2. Changes to VR-Link’s DtVector

	8. Migration to VR-Forces 4.5
	8.1. API Changes

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

